Efficient Computation of Class Numbers of Real Abelian Number Fields

نویسنده

  • Stéphane Louboutin
چکیده

Let {Km} be a parametrized family of real abelian number fields of known regulators, e.g. the simplest cubic fields associated with the Q-irreducible cubic polynomials Pm(x) = x −mx2 − (m+ 3)x− 1. We develop two methods for computing the class numbers of these Km’s. As a byproduct of our computation, we found 32 cyclotomic fields Q(ζp) of prime conductors p < 10 for which some prime q ≥ p divides the class numbers hp of their maximal real subfields Q(ζp) (but we did not find any conterexample to Vandiver’s conjecture!).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of relative class numbers of CM-fields by using Hecke L-functions

We develop an efficient technique for computing values at s = 1 of Hecke L-functions. We apply this technique to the computation of relative class numbers of non-abelian CM-fields N which are abelian extensions of some totally real subfield L. We note that the smaller the degree of L the more efficient our technique is. In particular, our technique is very efficient whenever instead of simply c...

متن کامل

Efficient computation of root numbers and class numbers of parametrized families of real abelian number fields

Let {Km} be a parametrized family of simplest real cyclic cubic, quartic, quintic or sextic number fields of known regulators, e.g., the so-called simplest cubic and quartic fields associated with the polynomials Pm(x) = x3 − mx2 − (m + 3)x + 1 and Pm(x) = x4 − mx3 − 6x2 + mx + 1. We give explicit formulas for powers of the Gaussian sums attached to the characters associated with these simplest...

متن کامل

On the computation of class numbers of real abelian fields

In this paper we give a procedure to search for prime divisors of class numbers of real abelian fields and present a table of odd primes < 10000 not dividing the degree that divide the class numbers of fields of conductor ≤ 2000. Cohen–Lenstra heuristics allow us to conjecture that no larger prime divisors should exist. Previous computations have been largely limited to prime power conductors.

متن کامل

Computation of the p-part of the ideal class group of certain real abelian fields

Under Greenberg’s conjecture, we give an efficient method to compute the p-part of the ideal class group of certain real abelian fields by using cyclotomic units, Gauss sums and prime numbers. As numerical examples, we compute the p-part of the ideal class group of the maximal real subfield of Q( √ −f, ζpn+1) in the range 1 < f < 200 and 5 ≤ p < 100000. In order to explain our method, we show a...

متن کامل

Computation of class numbers of quadratic number fields

We explain how one can dispense with the numerical computation of approximations to the transcendental integral functions involved when computing class numbers of quadratic number fields. We therefore end up with a simpler and faster method for computing class numbers of quadratic number fields. We also explain how to end up with a simpler and faster method for computing relative class numbers ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002